Abstract

Transfer RNA transcribed in vitro lacks the base modifications found in native tRNA. To understand the effect of base modifications on the structure of tRNA, the downfield region of the 1H NMR spectrum of in vitro transcribed E coli tRNA Val in aqueous phosphate buffer in the presence of excess Mg 2+ was investigated. The resonances of all imino protons involved in hydrogen bonds in the helical stem regions and in tertiary interactions were assigned using two-dimensional nuclear Overhauser enhancement spectroscopy (NOESY) and one-dimensional difference nuclear Overhauser effect (NOE) methods. In addition, some aromatic C2 and C8 proton resonances as well as one amino proton resonance were assigned. The chemical shifts of the assigned resonances of unmodified E coli tRNA Val were compared with those of the native tRNA molecule under similar solution conditions. The similarity of the NMR data for unmodified and modified tRNA indicates that the in vitro transcribed tRNA has nearly the same solution structure as the native molecule in the presence of excess Mg 2+. The only significant differences were the chemical shifts of resonances corresponding to protons in (or interacting with) bases, indicating the possibility of local structural perturbations. The thermal stability of E coli modified and unmodified tRNA Val in the presence of Mg 2+ was also investigated by analyzing the temperature dependence of the imino proton spectra. Several tertiary interactions involving modified nucleosides in native E coli tRNA Val are less stable in the absence of base modifications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.