Abstract

This study was conducted to examine whether the nuclear to cytoplasmic (N/C) ratio had any influence on the timing of embryo compaction and blastocoel formation, as well as formation rate and quality of blastocyst. First, we produced embryos with increased N/C ratio by removal of approximately one-third of the cytoplasm and with decreased N/C ratio by doubling the oocyte cytoplasm with an enucleated oocyte. The initiation of compaction and cavitation in reduced cytoplasm group was significantly earlier (P < 0.05) compared with the control and doubled cytoplasm groups. The rate of blastocysts in the reduced cytoplasm and doubled cytoplasm groups was significantly lower (P < 0.05) compared with the control group. Blastocyst quality in terms of total cell number in the reduced cytoplasm group was significantly lower (P < 0.05) compared with the doubled cytoplasm group, but not different from the control group. Next, we produced embryos with various N/C ratios by oocyte fusion combined with cytochalasin D treatment. The onset of compaction and cavitation in the 2N/2C group (decreased N/C ratio) was significantly delayed (P < 0.05) or had the tendency to be delayed (P = 0.064), respectively, compared with the control group (2N/1C). A significantly higher rate of blastocyst was observed in the 4N/2C group compared with the 1N/1C group (P < 0.05) but not different from the remaining groups. These results demonstrated that an increase in N/C ratio caused an earlier occurrence of morula compaction and blastocyst formation in both in vitro fertilization (IVF) and parthenogenetically activated pig embryos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call