Abstract

<span>The potential impact of high permittivity gate dielectrics on thin film transistors short channel and circuit performance has been studied using <a name="OLE_LINK110"></a><a name="OLE_LINK118"></a>highly accurate analytical models. In addition, the gate-to-channel capacitance and parasitic fringe capacitances have been extracted. The suggested model in this paper has been <a name="OLE_LINK37"></a><a name="OLE_LINK36"></a>increased the surface potential and decreased the <a name="OLE_LINK93"></a><a name="OLE_LINK92"></a>threshold voltage, whenever the conventional silicon dioxide gate dielectric<a name="OLE_LINK290"></a><a name="OLE_LINK280"></a> is replaced by high-K gate dielectric novel nanocomposite PVP/La<sub>2</sub>O<sub>3</sub>K<sub>ox</sub>=25. Also, it has been investigated that a decrease in parasitic outer fringe capacitance and gate-to-channel capacitance, whenever the conventional silicon nitride is replaced by low-K gate sidewall spacer dielectric novel nanocomposite PTFE/SiO<sub>2</sub>K<sub>sp</sub>=2.9. Finally, it has been demonstrated that using low-K gate sidewalls with high-K gate insulators can be decreased the gate fringing field and threshold voltage. In addition, fabrication of nanocomposites from polymers and nano-oxide particles found to have potential candidates for using it in a wide range of applications in low cost due to low process temperature of these nanocomposites materials.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.