Abstract

The fracture behaviour of a component or specimen that contains a sharp notch is governed essentially by the same theoretical relations known from cracks. The blunt notch root only causes an increase of the resistance against crack initiation, which depends on the fracture mechanism. In the present paper, the relation between fracture toughness and notch toughness is investigated by simple analytical models. The derived formulas were compared with experimental results obtained from fracture toughness tests on RPV-steel 24 NiCrMo 3-7 at various temperatures. 1T-CT- and 0.4T-SEB-specimens that contained a sharp notch with a root radius of 0.06mm introduced by spark erosion (EDM) instead of the standard fatigue crack were used. The predictions were found to agree well with the experimental data. The effect of the notch radius on fracture toughness is most pronounced in the brittle to ductile transition regime, where fracture toughness can be characterized by the master curve and the corresponding reference temperature T0 according to ASTM E1921. Accordingly, the effect of the notch radius can be quantified by a shift of T0. Since the shape of the transition curve depends on the notch radius, the procedure of ASTM E1921 to determine T0 is not applicable. An alternative is suggested. As limiting cases, ductile tearing and brittle fracture are also considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.