Abstract

The effect of an imposed magnetic field on the linear stability of immiscible two-fluid Poiseuille flow in a channel is examined for low Reynolds numbers. Surface tension acts on the interface, the fluids have different densities and viscosities, and one fluid is magnetic (ferrofluid). A Langevin function is used to model the fluid magnetization, resulting in a nonlinear permeability; the stability properties depend on this permeability relation both directly and indirectly, through the base state solution. Uniform magnetic fields applied normal or parallel to the interface both lead to an interfacial instability. Normal fields excite longer wavelength modes, generally having higher growth rates, but parallel fields can excite faster growing modes in high permeability fluids at large applied field strength. Whether or not the field stabilizes or destabilizes the flow depends on the viscosity and layer thickness ratios in a simple way, while the placement of the magnetic fluid layer does not play a major role. Growth rates predicted for realistic microchannel conditions are shown to be large enough to make ferrofluid manipulation a practical method of control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.