Abstract
The effect of norepinephrine (NE) on mechanisms of cellular Na+ transport in the isolated, perfused proximal tubule of Ambystoma tigrinum was examined. Single-barreled voltage and ion-selective microelectrodes were used to determine basolateral (V1), luminal (V2), and transepithelial (V3) membrane potentials and intracellular Na+ activity (alpha Nai). In CO2/HCO3- control solution, addition of NE (10(-6) M) to the bath caused depolarizations of V1, V2, and V3 are decreased alpha Nai. These effects were mimicked by isoproterenol and inhibited by propranolol. Addition of NE in the absence of luminal Na+ and substrates did not cause any changes in V1, V2, V3, or alpha Nai. NE did not affect the changes in membrane potential difference (PD) or alpha Nai caused by removal and readdition of luminal substrates and/or Na+. To study the effect of NE on Na-K-adenosinetriphosphatase (Na-K-ATPase), the pump was inhibited by external K+ removal and then reactivated by readdition of 12 mM K+ to the bath in the presence and absence of NE. Reactivation of the pump caused hyperpolarization of membrane PDs, and alpha Nai recovered monotonically in 3-5 min. The peak hyperpolarizations of V1 and V2 (approximately 1 min) were significantly larger in the presence of NE. During the first 3 min, and also at the same alpha Nai, the rate of decrease of alpha Nai was significantly faster in the presence of NE. In conclusion, these results show a direct effect of NE on cell membrane PDs and alpha Nai in the kidney proximal tubule. Most likely, beta-receptors are involved in mediating the action of NE. Neither Na/H exchange nor Na-substrate cotransport at the luminal membrane are affected by NE. On the other hand, NE activates Na-K-ATPase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.