Abstract
To expand the framework available for interpreting experiments on disordered strongly correlated systems, and in particular to explore further the strong-coupling zero-bias anomaly found in the Anderson-Hubbard model, we ask how this anomaly responds to the addition of nonlocal electron-electron interactions. We use exact diagonalization to calculate the single-particle density of states of the extended Anderson-Hubbard model. We find that for weak nonlocal interactions the form of the zero-bias anomaly is qualitatively unchanged. The energy scale of the anomaly continues to be set by an effective hopping amplitude renormalized by the nonlocal interaction. At larger values of the nonlocal interaction strength, however, hopping ceases to be a relevant energy scale and higher energy features associated with charge correlations dominate the density of states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.