Abstract
Propagation of wide optical beams in transverse periodic lattices have been reported to induce power oscillations between Fourier modes related by the Bragg resonance condition, resulting from the coupling between the beam and the periodic structure. These oscillations have been referred to as Rabi optical oscillations due to the analogy with matter Rabi oscillations. In this work, we investigate the behavior of Bragg-induced Rabi-type oscillations of a multimode Gaussian beam in the presence of optical nonlinearity. We find a combination of oscillation and spectrum broadening under both self-focusing and self-defocusing nonlinearities, in the sense that the oscillations are maintained while the spectrum is broadened and therefore partially transferred to the twin frequency. For intense self-focusing nonlinearities a complete leak of the initial mode profile to other modes is rapidly attained so that no oscillation is observed. In contrast, for intense self-defocusing nonlinearities the redistribution rate is so dramatic that oscillations cease and power only fades away.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.