Abstract

An analysis is performed to study the combined effects of nonlinear thermal radiation, Arrhenius activation energy, chemical reaction and heat generation/absorption on the steady three-dimensional magnetohydrodynamic flow of Eyring-Powell nanofluid flow over a slendering stretchable sheet with velocity, thermal and solutal slips. The prevailing partial differential equations are transmuted into coupled non-linear ordinary differential equations via with the suitable similarity transformations. The resultant non-linear coupled differential equations are solved numerically by using the R-K 4th order method along with shooting scheme. The results are calculated to measure the influence of sundry parameters on velocity, temperature, concentration, shear stress, temperature gradient and concentration gradient are presented graphically and in tabular form. It is noticed that the temperature is more impactable for higher values of radiative heat transport. The local Sherwood number decays exponentially for all the values of the chemical reaction parameter. We compared the present results for the limiting cases with previously published results, which has shown reliability and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.