Abstract

This paper investigates the nonlinear instability of internal gravity waves and the effects of their nonlinear interaction on momentum flux, using simple theoretical and numerical models. From the result of an analysis of parametric instability of a two-dimensional internal gravity wave as discussed by Yeh and Liu (1981) and Klostermeyer (1982), a group trajectory length scale for a gravity wave packet was determined, expressed in terms of the dominant vertical wavelenght and the degree of convective saturation. It is shown that this analysis justifies the Eikonal saturation method for relatively transient packets, that are well below the saturation amplitude, propagating in a slowly varying mean flow. Conversely, linear theory fails for persistent disturbances and trasient wave packets near convective saturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.