Abstract

To investigate the influence of excess surfactant on transport kinetics in emulsions, using phenylazoaniline (PAA), benzocaine, benzoic acid and phenol as model drugs. Mineral oil was chosen as the oil phase and the nonionic surfactant, polyoxyethylene oleyl ether (Brij 97) as the emulsifier. Model drug transport in emulsions was investigated using side by side diffusion cells mounted with hydrophilic dialysis or hydrophobic membranes. A novel method, involving a combination of a membrane equilibrium technique and surface tension measurement (Wilhelmy plate method), was developed to determine surfactant critical micelle concentration (CMC) in the presence of O/W emulsions. Emulsion stability was determined by droplet size analysis as a function of time, temperature and dilution using photon correlation spectroscopy and a light blockage technique. Model drug mineral oil/water partition coefficients and aqueous solubilities were determined in the presence of surfactant. The emulsion CMC value was used to calculate micellar phase concentration. The transport rates of PAA and benzocaine in emulsions increased with increase in Brij 97 micellar concentrations up to 1.0% w/v and then decreased at higher surfactant concentrations. The transport rates of the more hydrophilic compounds, benzoic acid (ionized form, pH 7.0) and phenol, were not affected by the presence of micellar phase. Excess surfactant affected the transport rates of the model drugs in the emulsions depending on drug lipophilicity. Transport rates measured using side by side diffusion cells appeared to be governed by model drug partitioning rates from the oil to the continuous phases and by membrane type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.