Abstract

Nonlinear self-modulation of dust–ion acoustic (DIA) waves is studied in an unmagnetized dusty plasma comprising warm adiabatic ions, arbitrarily charged dust particles, and hot nonextensive q-distributed electrons. By employing the multiple space and time scales perturbation, a nonlinear Schrödinger equation is derived for the evolution of the wave amplitude. The existence along with the stability of wave packets are discussed in the parameter space of two oppositely charged dust and ion temperature over different ranges of the nonextensive parameter q. The growth rate of the modulation instability is also given for different values of the q parameter. It is found that the critical wave number at which the instability sets in increases as the nonextensive parameter q increases. This leads to a wider range (in spatial extension) of the stable envelope solitons. It is also found that the effects of ion temperature and negative (positive) dust concentration significantly modify the criteria for the modulation instability of DIA waves. Our finding should elucidate the nonlinear electrostatic structures that propagate in astrophysical and cosmological plasma scenarios where nonextensive particles exist: such as instellar plasma, stellar polytropes, cosmic radiation, and systems with long-rang interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call