Abstract

Camelid α-lactalbumin is the only known protein that can undergo nonenzymatic deamidation on two Asn residues. This leads to the generation of a mixture of unusual isoAsp and d-Asp residues that may impact health. The effect of deamidation on camel α-lactalbumin instability was investigated. Circular dichroism showed that the altered protein acquired secondary structure resulting in an increase in α-helix content. In good agreement, the 3D structure of camel α-lactalbumin determined by X-ray crystallography, displayed a short additional α-helix probably induced by deamidation, compared to the human and bovine counterparts. This α-helix was located in the C-terminal region and included residues 101–106. Differential scanning calorimetry together with the susceptibility to thermolysin showed that the deamidation process reinforced the structural stability of the α-lactalbumin at high temperature and its resistance toward proteolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.