Abstract

We consider rotationally invariant noncommutative algebra with tensors of noncommutativity constructed with the help of additional coordinates and momenta. The algebra is equivalent to the well-known noncommutative algebra of canonical type. In the noncommutative phase space, rotational symmetry influence of noncommutativity on the spectrum of free particle and the spectrum of harmonic oscillator is studied up to the second-order in the parameters of noncommutativity. We find that because of momentum noncommutativity, the spectrum of free particle is discrete and corresponds to the spectrum of harmonic oscillator in the ordinary space (space with commutative coordinates and commutative momenta). We obtain the spectrum of the harmonic oscillator in the rotationally invariant noncommutative phase space and conclude that noncommutativity of coordinates affects its mass. The frequency of the oscillator is affected by the coordinate noncommutativity and the momentum noncommutativity. On the basis of the results, the eigenvalues of squared length operator are found and restrictions on the value of length in noncommutative phase space with rotational symmetry are analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call