Abstract

It has been a common assumption of interior models that the outer planets of our solar system are convective, and that the internal temperature distributions are therefore adiabatic. This assumption is also often applied to exoplanets. However, if a large portion of the thermal flux can be transferred by conduction, or if convection is inhibited, the thermal profile could be substantially different and would therefore affect the inferred planetary composition. Here we investigate how the assumption of non-adiabatic temperature profiles in Uranus and Neptune affects their internal structures and compositions. We use a set of plausible temperature profiles together with density profiles that match the measured gravitational fields to derive the planets' compositions. We find that the inferred compositions of both Uranus and Neptune are quite sensitive to the assumed thermal profile in the outer layers, but relatively insensitive to the thermal profile in the central, high pressure region. The overall value of the heavy element mass fraction, $Z$, for these planets is between 0.8 and 0.9. Finally, we suggest that large parts of Uranus' interior might be conductive, a conclusion that is consistent with Uranus dynamo models and a hot central inner region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.