Abstract
The interaction between electronic and vibrational degrees of freedom in single-molecule junctions may result from the dependence of the electronic energies or the electronic states of the molecular bridge on the nuclear displacement. The latter mechanism leads to a direct coupling between different electronic states and is referred to as nonadiabatic electronic-vibrational coupling. Employing a perturbative nonequilibrium Green's function approach, we study the influence of nonadiabatic electronic-vibrational coupling in model molecular junctions. Thereby, we distinguish between systems with well-separated and quasidegenerate electronic levels. The results show that the nonadiabatic electronic-vibrational interaction can have a significant influence on the transport properties. The underlying mechanisms, in particular the difference between nonadiabatic and adiabatic electronic-vibrational couplings, are analyzed in some detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.