Abstract

Recent scientific studies evaluating laser energy for tissue welding and thermokeratoplasty have demonstrated that the application of laser energy at non-ablative levels can alter collagen's structural and biochemical properties. A recent pilot study has demonstrated that the non-ablative application of holmium: yttrium-aluminum-garnet (Ho:YAG) laser energy to the joint capsule of patients with glenohumeral instability shrank the joint capsule, stabilizing the shoulder in the majority of the patients treated. Based on the collective findings of these studies, we hypothesized that thermal modification of dense collagenous tissues such as joint capsule, ligament, and tendon can be achieved by applying non-ablative laser energy. The purpose of this study was to evaluate the effect of laser energy at non-ablative levels on joint capsular mechanical, biochemical, histological, and ultrastructural properties in an in vitro rabbit model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.