Abstract

Microporous polyvinylidene fluoride (PVDF) hollow fiber membranes with various non-solvent additives, i.e. lithium chloride, glycerol, polyethylene glycol (PEG-400), methanol and phosphoric acid, were fabricated for CO2 stripping via membrane contactors. The membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated by using an in-house made stainless steel module with CO2-preloaded aqueous diethanolamine as the liquid absorbent. Hydrophobicity and gas permeability of the membranes reduced with the addition of a non-solvent additive in the polymer dope but increase in liquid entry pressure was observed as more sponge-like structures developed in the inner layer of the fibers. It was found that PVDF/PEG-400 membrane produced the highest stripping flux of 4.03×10−2molm−2s−1 which can be correlated to its high gas permeation and high effective surface porosity. The result of long-term stripping operation indicated an approximatly 80% stripping flux reduction which can be related to the interaction of polymer membrane and amine solution at high temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.