Abstract

The effect of non-reactive powder particle properties on the detergent dry agglomeration process in a high shear mixer was investigated. Three types of micron-scale silica were chosen as the non-reactive fine powders and a semi-solid alkyl ethyl ethoxy sulfate (AES) paste with ultra-high viscosity was chosen as the binder. The granules were characterized using mass-based granule size distribution, scanning electron microcopy, and bulk density tests. The results revealed that powder particle size plays a leading role in agglomeration behavior. A decrease in the median particle size results in enhanced dispersion of silica particles in the AES paste binder droplets, which leads to the formation of uniform granules that are slightly affected by compacting forces. Agglomerate quality, using silica with high oil absorption as well as optimum particle size, was satisfactory, and the product exhibited a smaller median particle size, narrower size distribution, and superior anti-caking capacity under the same liquid-to-solid ratio (L/S).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.