Abstract

The feedbacks between the mRNA and protein synthesis may result in kinetic bistability and oscillations. Two generic models predicting bistability include, respectively, a gene with positive regulation of the mRNA production by protein and two genes with mutual suppression of the mRNA production due to negative regulation of the gene transcription by protein. The simplest model predicting oscillations describes a gene with negative regulation of the mRNA production by protein formed via mRNA translation and a few steps of conversion. We complement these models by the steps of non-coding RNA (ncRNA) formation and ncRNA-mRNA association and degradation. With this extension, the bistability can often be observed as well. Without and with ncRNA, the biochemistry behind the steady states may be different. In the latter case, for example, ncRNA may control the mRNA population in the situations when this population is relatively small, and one can observe a switch in the mRNA, protein and ncRNA populations. Our analysis of oscillatory kinetics of the mRNA-protein interplay shows that with ncRNA the oscillations may be observed in a wider range of parameters and the amplitude of oscillations may be larger.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.