Abstract

Quantum properties of light, which are crucial resources for quantum technologies, are quite fragile in nature and can be degraded and even concealed by the environment. We show, both theoretically and experimentally, that mesoscopic twin-beam states of light can preserve their nonclassicality even in the presence of major losses and different types of noise, thus suggesting their potential usefulness to encode information in quantum communication protocols. We develop a comprehensive general analytical model for a measurable nonclassicality criterion and find thresholds on noise and losses for the survival of entanglement in the twin beam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call