Abstract

Tunable diode laser absorption spectroscopy is being widely used to make sensors for diagnostic purposes in various engineering applications. Since the wavelength of many diode lasers used in such sensors is sensitive to the driving current, even noise as small as a few μArms in the driving current can cause a wavelength fluctuation of ∼±0.5 pm, which is large enough to interfere with sensitive absorption measurements. Although these fluctuations are small, they can cause significant systematic error in measured absorption spectra in applications where the absorption line probed is narrow, as is the case for low-density hypersonic flows. As an example, at a pressure of 300Pa and 297K, the error in the full width at half-maximum was ±6.5% in an absorption spectrum obtained using a system based on a vertical-cavity surface-emitting laser scanned at 10kHz. This paper analyzes the effect of such systematic errors on measured temperature and velocity and suggests some remedial measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.