Abstract

As one of the most abundant non-methane hydrocarbon in the atmosphere, isoprene has attracted lots of attention on its oxidation processes and environmental effects. However, less is known about the nocturnal chemistry of isoprene with multiple oxidants coexisting in the atmosphere. Besides, though highly oxygenated molecules (HOMs) have recently been recognized to contribute to secondary organic aerosol (SOA) formation, the specific contribution of measured HOMs on SOA formation in isoprene oxidation has not been well established. In this study, the oxidation of isoprene was simulated under dark and various NO2/O3 conditions. Plenty of oxidation products were identified by combining two state-of-the-art time-of-flight mass spectrometers, and more species with high C and N numbers and low volatilities were detected under high NO2 conditions. The nocturnal oxidation of isoprene was found to be governed by synergic effects of multiple oxidants, including O3, NO3•, and •OH at the same time, and the oxidation proportions changed with NO2. NO2 promoted the formation of most N-containing products especially N2 products, because of the decisive role of NO3• on their formation. Nevertheless, some products such as C5H10O3–5, C5H11NO6, and C10H16N2O10,11 showed a better correlation with HO2NO2 rather than NO2/O3, indicating the importance of HO2• chemistry on the oxidation products formation. Though the concentration of measured oxygenated products was dominated by volatile and semi-volatile organic compounds, the low- and extremely low-volatile organic compounds contributed over 97 % to the SOA formation potential. However, challenges still exist in accurately simulating SOA formation from the measured oxygenated molecules to match the measurement, and further comprehensive characterization of oxidation products in both gas and aerosol phases at the molecular level is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.