Abstract
The effect of N-doping on the paramagnetic-antiferromagnetic transition associated with the metal-insulator (M-I) transition of V2 O3 at 150 K has been studied in bulk samples as well as in nanosheets. The magnetic transition temperature of V2 O3 is lowered to ∼120 K in the N-doped samples. Electrical resistivity data also indicate a similar lowering of the M-I transition temperature. First-principles DFT calculations reveal that anionic (N) substitution and the accompanying oxygen vacancies reduce the energy of the high-temperature metallic corundum phase relative to the monoclinic one leading to the observed reduction in Nèel temperature. In the electronic structure of N-substituted V2 O3 , a sub-band of 2p states of trivalent anion (N) associated with its strong bond with the vanadium cation appears at the top of the band of O(2p) states, the 3d-states of V being slightly higher in energy. Its band gap is thus due to crystal field splitting of the degenerate d-orbitals of vanadium and superexchange interaction, which reduces notably (ΔEg =-0.4 eV) due to their hybridization with the 2p states of nitrogen. A weak magnetic moment arises in the monoclinic phase of N-substituted V2 O3 with O-vacancies, with a moment of -1 μB /N localized on vanadium atoms in the vicinity of oxygen vacancies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.