Abstract

The effect of cooling conditions in the plasma-assisted molecular-beam epitaxy growth on the structural and optical properties of InGaN nanostructures is studied. It is shown that cooling of the samples without nitrogen plasma contributes to the suppression of phase separation in InGaN nanostructures. The integrated intensity of photoluminescence from these nanostructures increased by a factor of 2. Keywords: InGaN, silicon, nanostructures, photoluminescence, structural properties, optical properties, molecular beam epitaxy, nitrogen plasma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.