Abstract

Supplemental irrigation under a ridge-furrow (RF) cropping system is a valuable cropping practice that balances resource efficiency and high crop yield. However, the effects of nitrogen management on crop growth, yield formation, and economic benefits under RF systems have not been clearly investigated. In this study, the experiment was designed with three experimental factorials, including three cropping systems (RF, RF cropping with 80 mm irrigation; TF1, traditional flat cropping with 200 mm irrigation; and TF2, traditional flat cropping with 80 mm irrigation), two nitrogen application rates (NL, 180 kg N ha−1; NH, 240 kg N ha−1), and two fertilizer application models (B, all nitrogen fertilizers were applied basally at the pre-sowing stage; BT, nitrogen fertilizer was applied at both the pre-sowing and jointing stages at a ratio of 1:1). A two-year field experiment was conducted to investigate the effects of nitrogen fertilizer management on wheat yield, water and nitrogen utilization, and economic benefits under the RF cropping system. The results showed that the RF system significantly increased the soil moisture content and improved the water productivity (WP) and grain yield of wheat. Nitrogen reduction (NL) under the RF system did not affect the water use of the wheat compared with traditional high nitrogen application (NH) but increased the nitrogen uptake and fertilizer productivity of the wheat. Although NL led to a reduction in aboveground dry matter accumulation, it did not significantly affect the yield of wheat but increased the net income of wheat cultivation. Under NL conditions, the BT nitrogen application model promoted nitrogen uptake in wheat and ameliorated the reduction in grain protein content due to plastic film mulching, and this model is an integrated planting practice that trades off wheat yield and quality. These findings suggest that NLBT is a promising and recommendable cropping practice under RF systems considering resource utilization, high yield and quality, and economic efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.