Abstract
To elucidate the effect of nitrogen functional groups on the competitive adsorption of toluene and water vapor, a series of N-doped resorcinol-formaldehyde resin-based activated carbons using g-C3N4 as the nitrogen source were prepared, which possessed different N contents (1.29-6.14%). The competitive adsorption characteristics and mechanisms were investigated by characterizations, dynamic adsorption experiments, adsorption isotherms, and density functional theory calculations. Results showed that the normalized toluene adsorption capacity under 50 RH% was consistent with the N content, revealing that nitrogen functional groups can enhance the competitive adsorption for toluene under a humid atmosphere. Adsorption isotherms analysis suggested that nitrogen functional groups can not only accelerate the adsorption of toluene but also improve the hydrophobicity of carbon surface. Competitive adsorption mechanisms were ascribed to π-π interactions and electrostatic interactions. Specifically, graphitic-N and pyridinic-N enhance competitive adsorption for toluene through reinforced π-π interactions with toluene and weakened electrostatic interactions with water molecule. However, pyrrolic-N improve the competitive adsorption, which is principally attributed to enhanced π-π interactions with toluene. Furthermore, it was found that the reusability of activated carbon could be improved by nitrogen functional groups. This study provides theoretical hints to develop volatile organic compound adsorbents in the presence of water vapor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.