Abstract

ABSTRACTReductive dissolution of soil manganese (Mn) oxides increases potential toxicity of Mn2+ to plants. In order to examine the effect of nitrogen forms on reduction of Mn oxides in rhizosphere soil, a rhizobox experiment was employed to investigate the reduction of Mn oxides due to the growth of soybean and maize in an Oxisol with various contents of NO3–-N and NH4+-N and a total N of 200 mg kg−1. The results showed that exchangeable Mn2+ in rhizosphere soil was 9.6–32.7 mg kg−1 higher than that in bulk soil after cultivation of soybean and maize for 80 days, which suggested that plant root exudates increased reduction of soil Mn oxides. Application of ammonium-N promoted reduction of Mn oxides in rhizosphere soil compared to application of nitrate and nitrate together with ammonium. Soybean cultivation led to a higher reduction in soil Mn oxides than maize cultivation. Application of single ammonium enhanced Mn uptake by the plants and led to more Mn accumulating in plant leaves, especially for soybean. Therefore, application of ammonium-based fertilizer can promote reduction of soil Mn oxides, while application of nitrate-based fertilizer can inhibit reduction of soil Mn oxides and thus reduce Mn2+ toxicity to plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call