Abstract

Tea (Camellia sinensis) is considered to be acid tolerant and prefers ammonium nutrition, but the interaction between root zone acidity and N form is not properly understood. The present study was performed to characterize their interaction with respect to growth and mineral nutrition. Tea plants were hydroponically cultured with NH4+, NO3- and NH(4+) + NO3-, at pH 4.0, 5.0 and 6.0, which were maintained by pH stat systems. Plants supplied with NO3- showed yellowish leaves resembling nitrogen deficiency and grew much slower than those receiving NH4+ or NH(4+) + NO3- irrespective of root-zone pH. Absorption of NH4+ was 2- to 3.4-fold faster than NO3- when supplied separately, and 6- to 16-fold faster when supplied simultaneously. Nitrate-grown plants had significantly reduced glutamine synthetase activity, and lower concentrations of total N, free amino acids and glucose in the roots, but higher concentrations of cations and carboxylates (mainly oxalate) than those grown with NH4+ or NH(4+) + NO3-. Biomass production was largest at pH 5.0 regardless of N form, and was drastically reduced by a combination of high root-zone pH and NO3-. Low root-zone pH reduced root growth only in NO(3-)-fed plants. Absorption of N followed a similar pattern as root-zone pH changed, showing highest uptake rates at pH 5.0. The concentrations of total N, free amino acids, sugars and the activity of GS were generally not influenced by pH, whereas the concentrations of cations and carboxylates were generally increased with increasing root-zone pH. Tea plants are well-adapted to NH(4+)-rich environments by exhibiting a high capacity for NH4+ assimilation in their roots, reflected in strongly increased key enzyme activities and improved carbohydrate status. The poor plant growth with NO3- was largely associated with inefficient absorption of this N source. Decreased growth caused by inappropriate external pH corresponded well with the declining absorption of nitrogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.