Abstract

At the seedling stage, a small amount of N is required to boost growth of leguminous plants. A pot experiment was conducted to observe the effect of N fertilizer on various growth parameters and nodulation behavior of Pongamia pinnata under nursery conditions. After the establishment of seedlings, four nitrogen treatments, 0, 40, 80 and 100 kg·ha−1 N were applied in two equal splits. Monthly observations were taken for the morphological parameters viz. plant height, collar diameter, leaf number, root length, root shoot ratio, nodule number and weight per plant. Maximum plant height was recorded after application of N at 40 kg·ha−1. Seasonally, the difference in collar diameter in rainy season was significantly higher than in winter or summer. However, more leaves were produced per plant at N-40 and N-100 treatments in winter and rainy seasons. Higher root length was recorded in rainy season than in winter or summer. Root biomass was higher than for stems or leaves. Seasonal effects of N-80 and N-40 treatments on leaf dry weight were significantly higher than for N-100 or N-0. Stem dry weight was higher at N-40 than at other treatments in winter and summer seasons. Root:shoot ratio was higher throughout winter to early summer. Nodule biomass was 2–3 times higher in rainy season compared to winter or summer. Maximum nodule number and biomass per plant were highest at N-40, followed by N-0, N-80 and N-100 treatments. New nodule formation started from June to the end of September. Maximum biomass per plant was recorded at N-40, followed by N-80, N-100 and N-0. Nitrogen treatment effect and seasonal behaviour interaction were not significant. Significantly higher numbers of nodules per plant were recorded in rainy season followed by summer and winter for all treatments. Higher nitrogen doses suppressed growth while lower doses promoted growth in Pongamia pinnata. Therefore, the lower nitrogen dose i.e., N-40 Kg·ha−1 applied in two equal splits was suitable at the initial nursery stage for the increase in nodulation and biomass production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.