Abstract

Camelina [Camelina sativa (L.) Crantz] has potential in aquaculture, livestock feed production, and the biofuel industry. It is necessary to determine the appropriate production technology for the newly introduced crop under different environmental conditions. The objective of this 2-year study was to measure the response of five camelina genotypes in terms of seed yield, yield components, and disease incidence to applied nitrogen (N) at multiple sites in the Maritime provinces of eastern Canada. The factorial experiment was set up as a randomized complete block design. The two factors were six N rates (0, 25, 50, 100, 150, and 200 kg ha−1 N) and five genotypes of camelina (Calena, CDI002, CDI005, CDI007, and CDI008). The interactive effect of N rates and genotypes was considered. Results showed that camelina, which is usually considered a low-input crop, responded positively to increased applied N at rates up to 200 kg ha−1 N. Seed yield responded differently to applied N rates depending on genotype. Branch and pod development were decisive for seed yield. The advanced line CDI007 had the highest yield potential among the five genotypes. Downy mildew infection was positively correlated with applied N rates; however, seed yield was not significantly affected by downy mildew infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call