Abstract

The structure and mechanical properties of as-cast and thermomechanicaly processed (cold rolling followed by annealing at 700 °C and 900 °C) Fe40Mn40Cr10Co10 (at.%) high-entropy alloys doped with different amounts (0, 0.5, and 2.0 at.%) of N were examined. The as-cast Fe40Mn40Cr10Co10 alloy (N0) contained σ-phase particles at the boundaries of the fcc grains. The addition of 0.5 (N0.5) and 2.0 (N2) at.% of nitrogen suppressed the formation of the σ-phase due to which the alloys consisted of only the fcc phase. Annealing after rolling resulted in the development of static recrystallization and precipitation of additional phases: the σ-phase was found in the N0 and N0.5 alloys, and hexagonal M2N nitrides were found in the N2 alloy. The strength of the as-cast alloys at room temperature increased with increasing nitrogen concentration due to interstitial solid solution strengthening. Cold rolling and subsequent annealing resulted in considerable strengthening of the program alloys. The strength of the alloys increased with the N content and decreased with increasing annealing temperature. The best combination of mechanical properties at room temperature was attained in the N2 alloy after annealing at 700 °C, and at 77 K, was demonstrated by the N0.5 alloy after annealing at 900 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.