Abstract

The pore size range of activated carbon has an important effect on formaldehyde adsorption, while nitrogen-doped can promote formaldehyde adsorption, but the mechanism of nitrogen-doped on formaldehyde adsorption at different pore size range has not been elaborated clearly. Therefore, this paper investigates the effect of range on formaldehyde adsorption at different pore size scales. Through simulation, it is concluded that nitrogen-doped does not broaden the optimal pore size for formaldehyde adsorption and the optimal pore size is still 6 Å, but nitrogen-doped can improve the non-bonding interactions between formaldehyde molecules and activated carbon by changing the electrostatic distribution on the surface of activated carbon, which enhances the adsorption of formaldehyde molecules. In addition, the non-bonding interaction between formaldehyde molecules and activated carbon decreases with increasing pore size, whereas nitrogen-doped enhances the non-bonding interaction between formaldehyde molecules and activated carbon, and therefore nitrogen-doped improves the limiting pore size of activated carbon for formaldehyde adsorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call