Abstract

Global warming and loss of biodiversity are among the most prominent environmental issues of our time. Large sums are spent to reduce their causes, the emission of CO 2 and nitrogen compounds. However, the results of such measures are potentially conflicting, as the reduction of nitrogen deposition may hamper carbon sequestration and thus increase global warming. Moreover, it is uncertain whether a lower nitrogen deposition will lead to a higher biodiversity. We applied a dynamic soil model, a vegetation dynamic model and a biodiversity regression model to investigate the effect of nitrogen deposition reduction on the carbon sequestration and plant species diversity. The soil and vegetation models simulate the carbon sequestration as a result of nitrogen deposition and they provide the biodiversity model with information on the soil conditions groundwater table, pH and nitrogen availability. The plant diversity index resulting from the biodiversity model is based on the occurrence of ‘red list’ species for the tree soil conditions. Based on the model runs we forecast that a gradual decrease in nitrogen deposition from 40 to 10 kg N ha −1 y −1 in the next 25 years will cause a drop in the net carbon sequestration of forest in The Netherlands to 27% of the present amount, while biodiversity remains constant in forest, but may increase in heathland and grassland.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.