Abstract

The effects of nitrogen content on the microstructure and the mechanical properties of a cast nickel-base superalloy (CNS) have been investigated experimentally. Experimental results demonstrated that the grain structure of CNS samples was refined by increasing the nitrogen content, but the area percentage of microporosity has been augmented with increased nitrogen content. Increasing the nitrogen content resulted in the morphology evolution of carbide from an acicular or ‘Chinese hieroglyphs’ type to blocky one, while negligible change of the morphology of γ′ precipitates was observed. Finally, it was found that the tensile strength has no obvious variation as the nitrogen content increases from 5 to 26 ppm, but it reduces sharply when the nitrogen content is raised to 34 ppm. The elongation decreases gradually with increasing nitrogen content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.