Abstract

Precipitation variability and nitrogen (N) deposition caused by anthropogenic activities could profoundly impact ecosystem productivity and carbon cycling. In desert ecosystems, vegetation is sensitive to changes in precipitation and N deposition. However, the impacts of large changes in precipitation, especially with a concurrent increase in N content, on plant community remain unclear. In this study, we carried out experiments to monitor the impacts of five precipitation levels and two N levels on the plant community function and composition from the Junggar desert in Central Asia during the period 2018–2019. Our results showed that: (1) Aboveground net primary production (ANPP) significantly increased with increasing precipitation, it followed a positive linear model under normal precipitation range, and nonlinear mode under extreme precipitation events; (2) N application led to an increase in ANPP, but did not significantly improve the sensitivity of ANPP to precipitation change; (3) Changes in N content and precipitation, and their impacts on ANPP were mainly driven by plant density. These results provide a theoretical basis for predict the future dynamics of terrestrial vegetation more accurately under climate change and increasing nitrogen deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.