Abstract

High-nitrogen stainless steels (SS) are receiving increased attention because of the advantages of their strength over the SS with nominal composition. However, they are susceptible to dichromium nitride (Cr2N) precipitation during thermal exposure between 873 and 1323 K resulting in sensitization and subsequent intergranular corrosion. Round tensile specimens of AISI type 316LN SS, with three different nitrogen content 0.07, 0.14, and 0.22 wt.% in mill-annealed and sensitized (973 K for 24 h) condition were studied for their pitting corrosion behavior. The results of the potentiodynamic anodic polarization studies were correlated with the results obtained using electrochemical impedance spectroscopy (EIS) technique. Critical pitting potential (Epp) increased with increasing nitrogen content but the same was found to decrease on aging. The parameters indicating passive film stability measured by EIS revealed faster passive film dissolution as indicated by low polarization resistance, in sensitized condition and vice-versa in mill-annealed condition. The EIS results correlated well with the variation in the respective Epp obtained from the potentiodynamic polarization diagrams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call