Abstract

Nitric oxide (NO) hyperpolarizes intestinal smooth muscle cells. This study was designed to determine the mechanism whereby NO activates KCa channels of circular smooth muscle of the rabbit colon. Transmural biopsies of the rabbit colon were stained for NADPH-diaphorase. Freshly dispersed circular smooth muscle cells were studied in the whole cell configuration, as well as in on-cell and excised inside-out patch recording configurations, while KCa current and the activity of KCa channels, respectively, were monitored. NADPH-diaphorase-positive nerve fibers were found in both muscle layers. NO (1%) increased whole cell net outward current by 79% and hyperpolarized resting membrane voltage from -59 to -73 mV (n = 8 cells, P < 0.01). In the on-cell patch recording configuration. NO (0.5% or 1%) in the bath increased NPo of KCa channels; charybdotoxin (125 nM) in the pipette solution blocked this effect. In the excised inside-out patch recording configuration, NO (1%) had no effect on NPo of KCa channels. In the on-cell patch recording configuration, methylene blue (1 microM) or cystamine (5 mM) in the bath solution decreased the effect of NO (1%) on NPo of KCa channels. NPo was increased by 8-bromo-cGMP (8-BrcGMP; 1 mM), a cGMP analog, and zaprinast (100 microM), an inhibitor of cGMP phosphodiesterase. These data suggest that NO increased whole cell outward K+ current by activating KCa channels through a cGMP pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call