Abstract

Pulmonary vascular resistance decreases with increased cardiac output. Because nitric oxide (NO) and prostacyclin are potent vasodilators that are released with increased shear stress, their roles in the control of pulmonary vascular pressure were evaluated using isolated blood-perfused rat and dog lungs. Lungs were perfused with an initial arteriovenous pressure gradient (Ppa-Ppv) of 15 cmH2O; Ppa and Ppv were increased by the same amount, and the flow was measured. In rat lung (n = 6), the NO synthesis inhibitor NG-nitro-L-arginine methyl ester (L-NAME) decreased pulmonary blood flow by approximately 50% at the same pressure (P < 0.05), whereas the cyclooxygenase inhibitor indomethacin (n = 6) had no effect. In dog lungs (n = 6), indomethacin decreased pulmonary blood flow by approximately 50% at the same pressure gradient (P < 0.05), whereas L-NAME (n = 6) had no effect. Furthermore, the flow increase that occurs as venous and arterial pressures are elevated together (so that Ppa-Ppv is constant) was inhibited by L-NAME in rat lungs and by indomethacin in dog lungs (P < 0.05 for each). Plasma guanosine 3',5'-cyclic monophosphate (cGMP) rose with increased absolute pressure in rat lung [from 71 +/- 17 to 274 +/- 104 pM (P < 0.05)], and this increase was blocked by L-NAME. Plasma cGMP was unchanged in dog lung, but the ratio of prostacyclin to thromboxane tended to be higher.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.