Abstract

Abstract Nitrate limited growth of the diatom Phaeodactylum tricornutum in chemostat cultures produced marked changes in biochemical composition and a six‐fold reduction in the specific growth rate. This was associated with a reduction in the carbon and chlorophyll a specific light saturated rates, with little effect on light limited photosynthesis. Variations in specific growth rate were quantitatively related to carbon specific net photosynthesis and maximum chlorophyll a specific light saturated rates were positively correlated with cell nitrogen contents. The correlation between nitrogen content and photosynthesis for P. tricornutum and the differential effect of nitrogen supply on the light response curve of photosynthesis is qualitatively and quantitatively similar to published results for terrestrial vascular plants. There was little change in the photon (quantum) yield of photosynthesis which was not significantly different from 0.125mol O2 mol photon‐1 the theoretical upper limit based on the Z scheme, even under severe nitrate deficiency. The capacity to maintain a high photon yield under nitrate limitation is discussed in relation to the nitrogen requirements of the stromal and membrane components of the photosynthetic apparatus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call