Abstract

The electron transport rate (ETR) versus gross photosynthesis (GPS) relationship varies as a function of species, temperature, irradiance, and inorganic carbon levels, but less is known about the effect of nitrogen supply on this relationship. The objective of this study was to evaluate the effect of nitrate concentration on the ETR versus GPS relationship in Ulva rigida C. Agardh from the Mediterranean Sea. Chlorophyll content and tissue absorptance increased 2‐fold as nitrate in the media increased from 0 to 50 μM. Whereas internal N content increases 3‐fold at 50 μM, internal C increased slightly. Oxygen evolution and ETR, evaluated as in vivo chl fluorescence using pulse amplitude modulated fluorometry, in general saturated at irradiances above 100 μmol photons·m−2·s−1. Both maximum ETR and GPS values increased as nitrate concentration increased. In general, the ETR versus GPS relationship showed a linear response to increasing nitrate with little variance of the data. This relationship, however, became more variable at high irradiances and high nitrate concentrations. The ETR/GPS ratio was close to the theoretical value of 4 at low nitrate concentrations, and the ratio decreased exponentially when nitrate concentration in the media increased. The variations of ETR/GPS under different inorganic nitrogen supply are discussed in terms of the effect of nitrate on the photosynthesis and respiration relationship.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call