Abstract

ABSTRACT Microbial fuel cell (MFC) technology with decarbonization and denitrification is considered to be advantageous in treating wastewater with a low carbon-to-nitrogen ratio. In this study, MFC was treated with different concentrations of nitrate-nitrogen. The MFC technology revealed significant treatment advantages when compared to both abiotic electrode treatment and microbial treatment only. The best treatment effect was recorded when the MFC's nitrate-nitrogen () concentration was 414 mg/L. The running of the MFC system showed that it produced a stable output voltage of up to 0.17 V within 160 h. It showed a power density of up to 40.18 mW/m2, 1.58 times M1 (138 mg/L, 25.49 mW/m2), and 4.48 times non-biological electrode. The removal rate of was 97.48%, but the lack of anode electron supply resulted in the incomplete reduction of nitrate-nitrogen and accumulation of nitritenitrogen. Nitrate-nitrogen concentration in the study had no significant impact on microbial population diversity. However, the relative abundance of Proteobacteria increased from 47.3% to 65.4% when concentration increased from 138 to 414 mg/L. Burkholderiales, Hydrogenophilales, and Rhodocyclales were the main denitrifying bacteria. These results demonstrate promise in supporting the development of microbial cathode denitrification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call