Abstract

Anatase-type TiO2 nanoparticles doped with 0-30 mol% niobium were directly formed from precursor solutions of TiOSO4 and NbCl5 under mild hydrothermal conditions at 120-180 degrees C for 5 h using the hydrolysis of urea. When the niobium content increased from 0 to 30 mol%, the crystallite size of anatase increased from 8.5 to 19 nm. The band gap of anatase was slightly decreased by making solid solutions with niobium. Their photocatalytic activity and adsorptivity were evaluated separately by the measurement of the concentration of methylene blue (MB) remained in the solution after maintained in the dark or under UV-light irradiation. To form anatase-type solid solutions by doping 5-15 mol% niobium into TiO2 was effective for improvement of the photoactivity of TiO2. The photocatalytic activity (the photooxidation rate) and the adsorption amount of MB for the sample containing 15 mol% niobium became more than approximately nine times and six times as much as those of the hydrothermal anatase-type pure TiO2, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call