Abstract

Ni and Mo were added to ferritic stainless steel to improve the properties of the oxidation, electrical conductivity and Cr evaporation rate. The purpose of making this alloy was for application in solid oxide fuel cells (SOFCs) interconnect. Therefore, the cyclic and isothermal oxidation tests were performed and the area-specific resistance (ASR) and the Cr evaporation rate were investigated. The microstructure was discussed by scanning electron microscope (SEM). Glow discharge spectrometry (GDS) and X-ray were used for elemental and phase analysis, respectively. The addition of 3 wt% Mo reduced the oxidation rate and the Cr evaporation resistance by the formation of Laves-phase in oxide/metal interface. By reducing the activity of Fe in the steel, Mo was prevented outward diffusion of cations and anion diffusivity. Furthermore, Mo improved the electrical conductivity by filling the gaps and voids in the oxide/metal interface. The addition of 2 wt% Ni reduced the distribution of Laves-phase particles in substrate and the particles were moved to side oxide/metal interface and neighboring areas to it. Ni also improved the oxidation resistance and electrical conductivity in the steel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.