Abstract

Lycopersicon esculentum Mill. `Laura' plants were grown in the North Carolina State Univ. phytotron at 26C day temperature and 18, 22, 24, or 26C night temperatures to determine the effects of night temperature on pollen characteristics, growth, fruit set, and early fruit growth. Total and percentage normal pollen grains were higher in plants grown at night temperatures of 18 and 22C than at 24 and 26C, but germination was highest in pollen produced at 26C. Seed content was rated higher on the plants grown at 18C night temperatures than in any of the other treatments. Numbers of flowers and fruit on the first cluster were lower in the 26C night treatment than in the other night temperature treatments. Plant height was greatest but total shoot dry mass was lowest in the 22C night temperature treatments. Fruit fresh mass increased with night temperature, reflecting more rapid development, but the experiment was not continued to fruit maturity, so the effect of night temperature on final fruit size and total plant production could not be determined. Night temperatures of 26C reduced fruit number and percentage fruit set only slightly at a day temperature of 26C, even though these temperatures were above optimal for pollen production and seed formation. To separate temperature effects on pollen from direct or developmental effects on female reproductive structures, pollen was collected from plants in the four night temperature treatments and applied to stigmas of a male-sterile cultivar kept at 24-18C minimum temperatures in adjacent greenhouses. In the greenhouse-grown male sterile plants, no consistent effects of night temperature treatment given the pollen could be seen in fruit set, fruit mass, seed content (either on a rating or seed count basis), seedling germination, or seedling dry mass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.