Abstract

The (La0.7Ca0.3MnO3)1x/(NiFe2O4)x (x = 0 to 0.09) composites were prepared using a conventional solid state reaction method. The structural, magnetic properties, and electrical properties of LCMO/NFO composites were investigated using X-ray diffraction, scanning electron microscopy, field cooled DC magnetization, and magnetoresistance (MR) measurements. The resistivity measured as a function temperature demonstrates that the pure LCMO and x = 0.01 samples display metal to semiconductor transitions. However, the composites of x > 0.03 samples clearly present the electrical behavior as an insulator/semiconductor type behavior. It was observed that the resistivity of the samples increased systemically with an increase of the NFO content. From the MR measurements, it was found that the MR effect is enhanced for x = 0.01 with a NFO composition. In all, the spin-polarized tunneling and the spin-dependent scattering may be beneficial for an improved low-field magnetoresistance effect. These phenomena can be explained by the segregation of a new phase related to NFO at the grain boundaries or surfaces of the LCMO grains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call