Abstract
Hydrogen-rich metal alloys and compounds have drawn interest from planetary geophysics and condensed matter physics communities because of their potential for deep hydrogen storage in planets and high-temperature superconductivity. We find that a small amount of Ni can alter the phase behavior in the FeH alloy system. Ni can stabilize the double hexagonal close-packed (dhcp) structure in FeH up to the liquidus at 33 GPa, which is in contrast with the stability of the face-centered cubic (fcc) structure in Ni-free FeH at the same conditions. Above 60 GPa, Ni suppresses the stability of the tetragonal ${\mathrm{FeH}}_{2}$ phase but stabilizes fcc FeH at higher temperatures. At the same pressure range, we find tetragonal ${\mathrm{FeH}}_{2}$ and cubic ${\mathrm{FeH}}_{3}$ to be stable at temperatures above 2500 K without Ni. Therefore, in planetary interiors, Ni will expand the stability field of dense close-packed structures in the FeH system. If the Ni content is low, then ${\mathrm{FeH}}_{2}$ and ${\mathrm{FeH}}_{3}$ can play an important role in the cores of hydrogen-rich planets. Also, our study demonstrates that a secondary alloying component can severely impact the high-pressure stability of polyhydrides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.