Abstract

Hydrogen (H2) consumption and methane (CH4) production in pure cultures of three different methanogens were investigated during cultivation with 0, 0.2 and 4.21 μM added nickel (Ni). The results showed that the level of dissolved Ni in the anaerobic growth medium did not notably affect CH4 production in the cytochrome-free methanogenic species Methanobacterium bryantii and Methanoculleus bourgensis MAB1, but affected CH4 formation rate in the cytochrome-containing Methanosarcina barkeri grown on H2 and CO2. Methanosarcina barkeri also had the highest amounts of Ni in its cells, indicating that more Ni is needed by cytochrome-containing than by cytochrome-free methanogenic species. The concentration of Ni affected threshold values of H2 partial pressure (pH2) for all three methanogen species studied, with M. bourgensis MAB1 reaching pH2 values as low as 0.1 Pa when Ni was available in amounts used in normal anaerobic growth medium. To our knowledge, this is the lowest pH2 threshold recorded to date in pure methanogen culture, which suggests that M.bourgensis MAB1 have a competitive advantage over other species through its ability to grow at low H2 concentrations. Our study has implications for research on the H2-driven deep subsurface biosphere and biogas reactor performance.

Highlights

  • Nickel (Ni) is an essential trace metal for most living organisms and especially for methanogens, which use it as a key metal co-factor in many enzymes involved in different parts of their metabolism or in methanogenesis

  • The aim of this study was to investigate the need for Ni in production of CH4 and consumption of H2 by three different pure cultures of methanogens, all using H2 as a substrate but with two being strict hydrogenotrophs (Methanobacterium bryantii and Methanoculleus bourgensis strain MAB1) and one a methylotroph/acetoclast (Methanosarcina barkeri)

  • The results showed that the formation of CH4 by M. barkeri was influenced by Ni limitation, with increased production with increasing Ni concentration in the growth medium (Fig 2)

Read more

Summary

Introduction

Nickel (Ni) is an essential trace metal for most living organisms and especially for methanogens, which use it as a key metal co-factor in many enzymes involved in different parts of their metabolism or in methanogenesis. One of these Ni-containing enzymes, methyl-coenzyme M reductase (MCR) and its co-factor F430, which is responsible for the terminal reaction of methane (CH4) formation by methanogens, is unique to methanogens. Under Ni-limiting conditions, obligate hydrogenotrophic methanogens have the ability to use a Ni-free hydrogenase, where the reactive center consists only of Fe [2]. PLOS ONE | DOI:10.1371/journal.pone.0168357 December 16, 2016

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call