Abstract

DNA synthesis and cell divisions in the quiescent center as well as initiation of lateral root primordia were investigated in the course of incubation of the roots of 3-day-old wheat (Triticum aestivum L.) seedlings on the medium with 0.1 mM NiSO4 for 72 h. It was found that the earliest effect of nickel on proliferation of the quiescent center cells was associated with an increase in the mitotic index 6 h after the beginning of its action. This effect was assumed to depend on an increase in mitosis time. Twelve hours after the beginning of the effect of nickel, mitotic index became somewhat lower, and in 18 h it sharply decreased. Some dividing cells were observed among the initial cells of certain tissues and near the quiescent center even in 72 h. The portion of DNA synthesizing cell sharply decreased in 12 h, and in 48 h such cells were lacking. The main mechanism governing the termination of cell proliferation in the quiescent center as well as in the meristem and calyptrogen of the cap is the inhibition of cell transition to DNA synthesis. The cells that had time to start DNA synthesis or already finished it and were in other phases of the cycle continued a slow progression through the cycle and completed it. Sister cells, produced as a result of divisions, left the mitotic cycle in the phase G1 and transited to dormancy. Nickel did not inhibit initiation and development of lateral root primordia. Resumption of DNA synthesis and cell divisions occurred not only in the pericycle and endodermis participating in the initiation of lateral root primordia but also in the cortex cells in the vicinity of developing primordia. In 18 h after the beginning of the experiment when the rate of the root growth considerably decreased, the region, where primordia were initiated, was located closer to the root tip. Subsequently, when elongation of the cells was inhibited, this region moved closer to the tip until structural disturbances occurred in the nuclei of the endodermal cells located near the root tip and elongated under the effect of nickel. The results concerning the effect of nickel and other heavy metals on root cell proliferation obtained by other researchers and the role of pericycle organization in the translocation and accumulation of nickel in the tissues are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call