Abstract

The influence of Ni2+ concentration on biohydrogen production was investigated using waste activated sludge as substrate. The degradation of substrate, accumulation of volatile fatty acids (VFAs) and distribution of microbial community were analyzed to provide information for influencing mechanisms of Ni2+ addition. The experimental results demonstrated that the efficiency of hydrogen fermentation from waste activated sludge could be significantly improved. The optimal Ni2+ concentration was 5 mg/L, and under this concentration, the cumulative hydrogen production was 1.29 times of the control group. The degradation of soluble chemical oxygen demand (SCOD) increased from 25.21% to 27.69% when the added Ni2+ concentration was 5 mg/L. The analysis of microbial community distribution revealed that Ni2+ decreased the microbial diversity, and provided more suitable condition for the microbial growth and activity of hydrogen-producers. Citrobacter was the dominant hydrogen-producers in the control group, they changed into Enterococcus when 5 mg/L Ni2+ was added. Besides, the proportion of Clostridium_sensu_stricto_1, which is regarded as the primary hydrogen-producing bacteria under numerous operating conditions, was also significantly increased in the presence of Ni2+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call